7
Dr‘QObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

SCM Patterns for “Agile”
Architectures

Brad Appleton
Software CM/ALM Solution Architect
Arlington Heights, IL
brad@bradapp.net

!
DI'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Agenda

e Part I: Background
— What is Architecture? Architectural Views
— What is Aqgility? Lean & TOC
— What is Agile Architecture?
— What is SCM? SCM & Architecture
— Core SCM Pattern Concepts

e Part ll: The Patterns
— Codeline Patterns
— Build/Integration Patterns
— Promotion “Leveling” Patterns
— Variability Management

— Wrap-Up

I
Dr-DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

The fundamental organization
of a system:

* embodied in its components,

« their relationships to each
other and the environment,

* and the principles governing
its design and evolution

-- IEEE 1471-2000

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

4+1 Views model of Software
Architecture (Kruchten & UML/RUP)

Logical Implementation
View {ZE View
Analysts/Designers Programmers

Structure / \Conflguratlon Mgmt
/
End-user C% C
F |
Process . "eroneY S’\ileﬁse Deployment
View View

System Integrators System Engineering
Performance System topology
Scalability Delivery, installation
Throughput Communication
\ ——
~— ~—
Conceptual Physical

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
What is Agility?

“The ability to both create and respond to change in order
to profit in a turbulent business environment.”
-- James Highsmith, Agile Software Development Ecosystems

Rapid Response with Efficiency in Motion,
Economy of Effort, Energy in Execution, and
Efficacy of Impact!

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Agile Development Characterlstlcs

Adaptive — responsive to change in needs & requirements
via continuous feedback and reflective retrospection

Goal-driven — focus on producing executable-results
(working functionality) in order of highest business value.

Iterative — short development cycles, frequent releases,
regular feedback

L_ean — simple design, streamlined processes, elimination
of redundant information, minimal intermediate artifacts

Emergent behavior — highly collaborative self-organizing
teams in close interaction with stakeholders

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Principles of Lean Development

« Eliminate Waste (Minimize Artifacts & Add Nothing
but Value)

* Build Quality In (Satisfy All Stakeholders & Deploy
Comprehensive Testing)

* Amplify Learning (Learn by Experimentation)

e Defer Commitment (Decide as Late as Possible)
e Deliver Fast (Deliver as Fast as Possible)

* Respect People (Decide as Low as Possible)

* Optimize the “Whole” (Measure Business Impact &
Optimize Across Organizations)

Source: Mary & Tom Poppendieck, http://www.poppendieck.com/

T
Dr.Dobb's DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Theory of Constraints — 5 Focusing Steps

IDENTIFY the Constraint
EXPLOIT the Constraint
SUBORDINATE to the Constraint
ELEVATE the Constraint

Repeat — PREVENT INERTIA from
becoming the Constraint

ok wdhE

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

What is an “Agile Architecture”?

» Gracefully evolves & adapts to meet changing
needs & constraints

* Resilient & responsive to change

7
Dr‘QObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

» Configuration
Identification

» Configuration Control
» Status Accounting
* Audit & Review

e Build & Release
Management

« Process
Management, etc

11

I
DEDObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

What is SCM? (Agile view)

SCM is a set of structures & practices that:

< Facilitate frequent feedback on build quality & product suitability

« Enable changing & building systems in repeatable, agile fashion with;
— Increased productivity
— Enhanced responsiveness to customers
— Increased quality

« Help your customers feel more confident

Customer

12

Copyright © 2003-2006 by Brad Appleton & Steve Berczuk

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

What is SCM? (Architectural view)

Software Configuration
Management is the
architecture of the
evolution of architecture!

4+2 views of SCM “Architecture”

1) The Project structures

2) The flow of Evolution

3) Product Objects/Artifacts
4) Your Environment

+1) Your

+2) Your Organization

13

!
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

4+2 Views of SCM Architecture |

Organization &@@ Rl Toammya Cojaboraton

Producers & Consumers
diversity Metrics/Reports/Audits
-) &scale |~ g]
Project “eP& Product

! = Q

Project/Program Managers, QA/V&V ! 2 >3
Status Accounting [Architects/Engineers/Builders i\
~

Request/Defect Management Product/Artifact Structure

]
Change Planning/Tracking PrOCGSS Build/Release Engineering
. decision binding-time & B0 change/creation-time ’

change/creation time | OCESS-USers/engineers (g gecision binding-time |

Process Workflow
H Procedures/Training 1
Evolution pracicespateme. | ENVITONMENt | 1|
Integrators/Release Mgrs '1 . IT Engineering/Support >5+
Versioning/Baselining ; = Workspaces/Repositories (>“<
Branching & Merging \ Application Integration +
Parallel Development scale & | 4 @Computing Infrastructure
diversity'— J
N 7 N~ 7
~v" ~"
Conceptual Physical

Copyright © 1997-2006 by Brad Appleton 14

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

What are
Patterns?

°
Q)
o
Q.
@
2
®
~
99
=
&)
>
(@)
-y

N

Configuration
— Version

— Revision

— Label
Workspace

wortp JULY 17-20, 2006, CHICAGO, IL

What are Patterns and Pattern Languages?

* A pattern is a solution to
a problem in a context.

» Patterns capture common
knowledge.

» Pattern languages guide
you in the process of
building something using
patterns. Each pattern is
applied in the correct way
at the correct time.

16

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Codeline

» A codeline contains every version of every
artifact over one evolutionary path.

o L
g R Ry

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

R1

A
|—

2|

17

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Branching

 Branch: A codeline that contains work that derives
(and diverges) from another codeline.

» Branch of a file: A revision of a file that uses the
trunk revision as a starting point.

Z@
[/main]

N

18

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Versions, Revisions and Labels

* Revision: An element at a point in time.

« Configuration: A snapshot of the codeline at a
point in time.

» Version: A labeled configuration.

R1

_IL{JQ_ILV\ZJ

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

19

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

Workspace

» Everything you need to build the Product
— Code, Scripts, Database resources, etc.

20

10

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Part Il: The Patterns

» Codeline Patterns =

e Build/Integration -5
Patterns T

 Promotion

“Leveling”
Patterns

» Variability
Management

 Wrap-Up

21

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

SCM Patterns across the 4 Views

Project Product
 Task-Based Development « Private Build
* Promotion Leveling * Integration Build

« Private Checkpoint
- » Workspace Update L g]
G| | » Smoke/Regression Test —& !l

Cr] Al « Variability Mgmt =30
Evolution Environment &%
* Mainline * Private Workspace P
* Release Line st Integration Workspace =~ E
¢ Active Development Line « Staging Area

* Release-Prep Codeline
» Task Branch
* Private Branch

Copyright © 2004-2006 by Brad Appleton 22

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Codeline Patterns

* Mainline

» Active Development
Line

* Codeline Policy

» Release Line

 Release-Prep
Codeline

* Task Branch
* Private Branch

23

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Codeline Structures for Agility

How many codelines should you be
working from?

What should the rules be for check-ins?

Codelines are the integration point for
everyone’s work.

Codeline structure determines the pulse of
the project.

24

12

7
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

* You want to simplify
your codeline
structure.

« How do you keep
the number of
codelines
manageable (and
minimize merging)?

25

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL 51 IR - L4l

Mainline (Forces & Tradeoffs)

A Branch is a useful tool for isolating yourself
from change.

» Branching can require merging, which can be
difficult.

» Separate codelines seem like a logical way to
organize work.

* You will need to integrate all of the work
together.

 You want to maximize concurrency while
minimizing problems cause by deferred
integration.

26

13

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Mainline (Solution)

» Keep Latest release/project efforts on Mainline
* Branch Late/Lazy to support & maintain previous
releases [use nested synchronization]

® DON'T cascade new branches for follow-on
projects/releases [avoid staircase branching]

© DO sync-merge to Mainline (“mainlining”) to reduce
breadth of branch tree

27

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Mainline
: N\ m\ M
1
/rell.1 —@ /rel2.1 —@

vs. Cascading Staircase

/rel3.0 —Q—
/rel2.0 — I

I T '

/rell.0 : /rel2.1 —@
/rell.1 —@

28

14

7
Dr‘QObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Active Development Line

You are developing
on a Mainline.

How do you keep a
rapidly evolving
codeline stable
enough to be useful
(but not impede
progress)?

29

!
DI'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Active Line (Forces & Tradeoffs)

A Mainline is a synchronization point.
More frequent check-ins are good.
A bad check-in affects everyone.

If testing takes too long: Fewer check-ins:
— Human Nature

— Time

Fewer check-ins slow project’s pulse.

30

15

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Phase Shift

* Long running tests increase the likelihood of

phase shift.
Your Test passes here Your T_est Would
Fail Now
You Edit You Test
[—) —
. They Edit >

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton 31

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Active Development Line (Solution)

» Use an Active Development Line.

» Have check-in policies suitable for a “good
enough” codeline.

» Unresolved:
— Doing development: Private Workspace
— Keeping the codeline stable: Smoke Test
— Managing maintenance versions: Release Line
— Dealing with potentially tricky changes: Task Branch
— Avoiding code freeze: Release Prep Codeline

32

16

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Codeline Policy

» Active Development
Line and Release
Line (etc.) need to
have different rules.

 How do developers
know how and when
to use each
codeline?

33

!
Dr-DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Codeline Policy (Forces & Tradeoffs)

» Different codelines have different needs,
and different rules.

* You need documentation. (But how
much?)

* How do you explain a policy?

34

17

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Codeline Policy (Solution)

» Define the rules for each codeline as a
Codeline Policy. The policy should be
concise and auditable.

« Consider tools to enforce the policy.

Active
Development
Line

Private
Versions

Release Prep

Release Line Codeline

Codeline
Policy

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton 35

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

Release Line

* You want to maintain
an Active
Development Line.

* How do you do
maintenance on a
released version
without interfering
with current work?

36

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Release Line (Forces & Tradeoffs)

* A codeline for a released version needs a
Codeline Policy that enforces stability.

« Day-to-day development will move too
slowly if you are trying to always be ready
to ship.

37

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Release Line (Solution)

» Split maintenance/release activity
from the Active Development Line
and into a Release Line.

Line
 Allow the line to progress on its

-
own for fixes.

/IRelease-1 — fixes
/main — Release 1 work {J/

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton

Active
Development

38

19

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Release Prep Codeline

* You want to maintain
an Active Development
Line.

* How do you stabilize
a codeline for an
imminent release
while allowing new
work to continue on
an active codeline?

39

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Release-Prep Codeline
(Forces & Tradeoffs)

* You want to stabilize a codeline so you
can ship it.

» A code freeze slows things down too
much.

 Branches have overhead.

40

20

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Release Prep Codeline (Solution)

» Branch instead of freeze. Create a
Release Prep Codeline (a branch)
when code is approaching release
quality.

» Leave the Mainline for active
development.

» The Release Prep Codeline becomes m
the Release Line (with a stricter policy) L__c°deline
* Note: If only a few people are doing

work on the next release, consider a
Task Branch instead.

Active
Development
Line

41

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Task Branch

Created exclusively for
the duration of a single
development task

— Good for risky or
experimental efforts

42

21

7
Dr‘D.,ObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Private Branch

Created exclusively for
a single developer (or
two) for the duration
of a project

— Encompasses multiple
(sequential) change-
tasks

— Good for implementing
Private Checkpoints

43

!
Dr‘D_ObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Build/Integration Patterns

« Private Checkpoint SEESE
e Workspace Update #&
o Task-Level Commit
* Private Build

* |ntegration Build

e The Three Builds
 Smoke Test

* Regression Test

44

22

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Private Checkpoint

* An Active Development
Line will break if people
check in half-finished
tasks.

 How can you
experiment with
complex changes and
still get the benefits
of version
management?

45

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Private Checkpoint
(Forces & Tradeoffs)

¢ Sometimes you may want to checkpoint
an intermediate step of a long, complex
change.

 Your version management system
provides the facilities for checkpointing.

* You don’t want to publish intermediate
steps.

46

23

7
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Private Checkpoint (Solution)

* Provide developers with a mechanism for
checkpointing changes using a simple
interface.

« Can Implement as any of the following:

— Private Archive/Repository
— Private Branch

— Task Branch

— Private Label/Tag

47

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Workspace Update

e Synchronize your
workspace with the
codeline, without
breaking the codeline

* Reconcile recent
changes together
sooner & keep
developers aware of
others activities

48

24

7
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Workspace Update

codeline —O—O—O

- private O O
. workspace |
. 3

49

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

* You need to
associate changes
with an Integration
Build.

* How much work
should you do
before checking in
files?

50

25

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Task Level Commit
(Forces & Tradeoffs)

The smaller the task, the easier it is to roll
back.

A check-in requires some work.

It is tempting to make many small changes
per check-in.

You may have an issue system that
identifies units of work.

51

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Task Level Commit (Solution)

Do one commit per small-grained task.
e [Compare with Task Branch for long lived efforts]

codeline —O O O O

4
I
|
I

commit

I
poemebooeos /

. private . O O O,
. workspace |
. L

52

26

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Private Development Build

* You need to build to
test what is in your
Private Workspace.

* How do you verify
that your changes
do not break the
system before you
commit them to the
Repository?

53

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Private Development Build
(Forces & Tradeoffs)

» Developer Workspaces have different
needs than the system build.

* The system build can be complicated.

» Checking-in changes that break the
Integration Build is bad.

54

27

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Private Build (Solution)

» Build the system using the same
mechanisms as the central integration
build, a Private Development Build.

» This mechanism should match the
integration build.

» Do this before checking in changes!

» Update to the codeline head before a
build.

55

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

» What is done in a
Private Workspace
must be shared with
the world.

* How do you make
sure that the code
base always builds
reliably?

56

28

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Integration Build
(Forces & Tradeoffs)
People do work independently.

Private Development Builds are a way to
check the build.

Building everything may take a long time.

You want to ensure that what is checked-
in works.

57

!
DEDObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Integration Build (Solution)

* Do a centralized build for the entire code
base.

Copyright © 2003-2006 by Steve Berczuk & Brad Appleton 58

29

7
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

The Three Builds

Private Development Build

— Provides a consistent way for the developer to build
the software in the confines of their private workspace
Team Integration Build

— Synchronize team, feedback on code quality/integrity
Formal Release Build

— Creates the deployable package
Why?:

— Productivity, predictability, documented, ability
to delegate build activity without

compromising CM or quality.

59

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

Integration

Build A
o A PBriv_?ée N

= ~.. Build .~

cof FR LN B\ 2\ T
ou ST 9 23 < S
©TD =5 © 3 83 S c

= @

Sl 55 R . O c3 o
Dy >0 - . oo |32
=7\28 = ~

X Developer /.

i S

Development
Team

Customer /
Test (V&V

9,
/935 [eanypeMVR

60
Copyright © 2003-2006 by Brad Appleton & Steve Berczuk

30

7
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Smoke Test

* You need to verify an
Integration Build or a
Private Build so that
you can maintain an
Active Development
Line?

 How do you verify
that the system still
works after a
change?

61

!
Dl'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Smoke Test
(Forces & Tradeoffs)

» Exhaustive testing is best for ensuring
quality.

* The longer the test, the longer the check-
in, encouraging less frequent check-ins.

62

31

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Smoke Test (Solution)

» Subject each build to a Smoke Test that
verifies that the application has not broken
in an obvious way.

e Unresolved: A Smoke Test is not
comprehensive. You will need to find:

— Problems you think are fixed: Regression Test
— Low level accuracy of interfaces: Unit Test

63

!
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Regression Test

» A Smoke Test is good
but not | :
comprehensive. A

* How do you ensure \
that existing code
does not get worse
after you make
changes?

64

32

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Regression Test
(Forces & Tradeoffs)

« Comprehensive testing takes time.

* Itis good practice to add a test whenever
you find a problem.

* When an old problem recurs, you want to
be able to identify when this happened.

65

!
DEDObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Regression Test (Solution)

» Develop Regression Tests based
on test cases that the system Smoke Test

has failed in the past. \Jl/

* Run Regression Tests whenever T
. es
you want to validate the system.

66

33

I
DEQObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

* What is “Promotion”?
* Version Promotion

e Promotion Workspaces
* Branch Promotion

e Promotion Branches

e Label Promotion

wortp JULY 17-20, 2006, CHICAGO, IL

What is a Promotion Lifecycle?

» A series of stages/levels that our end-result
must pass through before we are willing to
“release” it to others

* A sequence of significant milestone events,
each of which represents either:
— an increase in confidence, or ...
— a transfer of responsibility
in assuring the release-quality of a deliverable

Example Promotion Lifecycles:

« {Developed, Reviewed, Tested, Audited, Released}

« {Development, Staged, Tested, Validated, Production}
« {Private, Team, QA, Customer, Failed}

68

34

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Common Promotion Mechanisms

» Version Promotion (Promoted Versions)

* Promotion Workspaces

» Branch Promotion (Promoted Branch)

* Promotion Branches (Promotion Branching)
» Label Promotion (Promoted Label)

* Promotion Labels (Promotion Labeling)

— Equivalent to Version Promotion using Labels as the
“attribute values” for the promotion-level

69

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Version Promotion

* The most recent version of each file on the codeline is
associated with a promotion level

» File versions are “promoted” to the next level by
“advancing” their promotion-level attribute

* Whenever a file is “updated”, it starts over again at the
initial promotion level.

PRO: Can easily discern if all files on the tip of the codeline
are at the correct promotion level, and which files aren’t

CON: Can be very cumbersome to implement if you have
to do it yourself

70

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Version Promotion

| F1=DEV | | F1=INT | | F1=INT |
| F2=DEV | | F2=INT | ' F2=DEV |
R1 I P R2 ' -
File F2 : —
| g R |

Copyright © 2003-2006 by Brad Appleton & Steve Berczuk 71

!
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Promotion Workspaces

» Uses a separate workspace or “staging area” for
housing built deliverables deliverables

* When a build progresses from one level to the next, the
built results are “pushed” to the next-level workspace
« Common example uses three “vaults” (staging areas):
1. Development Integration “Vault”
2. Formal Integration+Test “Vault”
3. Production Distribution “Vault” (Release-Area)

PRO: No confusion over which versions in the workspace
are at which “level”

CON: Can be time-consuming to copy/link file versions
across workspaces or staging areas

72

36

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Promotion Workspaces

- Production

..'
2 | Distribution

e

Formal

Integration+Test X
Development 32 M

Integration Workspace

Workspace Repository
F“—J
o9
Promotion Workspaces

73

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Branch Promotion

» Associate promotion-level attribute with an entire
codeline

* When tip of the codeline progresses from one level to
the next, advance the branch’s promotion-level

PRO: Very quick & easy to “promote” — no files need to be
copied/linked

CON: Okay for handing off an entire branch but not as
useful when using the same codeline for frequent
handoffs (can't tell status of previous handoff anymore)

74

37

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Branch Promotion

Promotion
Level=

Codeling!Branch

) ‘ R1 [Rz | [Ra
F!E!:JDS!ICIW

. __‘__, _ =
FJJ ‘ vl_IL |

1 |H2|
.| |

Branch Promotion

75

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Promotion Branches

» Uses separate branch/codeline for each promotion level
* When a build progresses from one level to the next, the
versions are “pushed” (copymerged)

* Very similar to promotion workspaces, but with codelines
instead (or in addition)

PRO: Codelines make for nice “integration territories” when
transferring responsibility — avoids “turf wars” and “policy
disputes” from competing groups by giving each their
own codeline and codeline policy

CON: Creates a new version when promoting to the next
level (even if no changes were needed)

76

38

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS
wortp JULY 17-20, 2006, CHICAGO, IL

Promotion | .~ — & T Ty gy
Branch e ¥ Y

Promotion Branching
77

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Label Promotion

» Associate promotion-level attribute with each label/build

* When build progresses from one level to the next,
advance the label's promotion-level

PRO: Very quick & easy to “promote” — no files need to be
copied/linked and no versions to merge; allows for
multiple builds on the same codeline to each go thru
their own promotion levels independently

CON: Can be somewhat unwieldy to implement if your tool
doesn’t readily support “attributes” on a label/tag

78

39

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Label Promotion

Promaotion
Level=
e

R | [R2 | R3 | :
- i »

Repasitory i
R1 R2 I
I
R R2 !
T

tq_

Label Promotion

79

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Variability Management

« What is Product
Variability?

Why Product Variability?
Branching-time or
Binding-time?

Binding Times
Build/Package Options
Feature Configuration
Business Rules
Composition, Inheritance
& Aspects

80

40

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

What is Product Variability?

Product-Lines & Product-Families:

 Variability of a single codebase across multiple
products:

Multi-Variant Product:

 Variability of a single codebase across the same
product:

81

!
DEDObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Multiple Products & Multiple Variants

Product-Lines & Product-Families:

* An entire line/family of different products with some “core”
(shared) components & functionality

» Each product has some unigue combination of additional
functionality and/or functional “variation”

Multi-Variant Product:
* Many (functional) variations of the same (product) theme
» Variations are often customer/market-specific

» Different from supporting legacy releases (multi-project):

— because the functional differences aren’t separated by time, but
by market/customer and/or technology/platform.

82

41

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Why Product Variability?

A Company may offer product variability
because they may believe ...

* “One size does not fit all!”

It will improve competitive advantage

It will increase their market size/share

It will uniquely differentiation them in the market

(branding)

Etc.,

83

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL :
Branching-time or Binding-time?

* Many attempt product-variability with
Branching by using a codeline per variant;
Don’t do this!

— Branching is for isolation/synchronization of
code across people & places during the same
time-period:

» Concurrent/parallel & remote/distributed
development

» Maintaining legacy/historical versions of an install-
base

84

42

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Branching-time or Binding-time?

Address Variability using late-binding
(instead of branching) whenever possible!

— Branching for Variability is like Cut-n-Paste
Reuse!

» Creates multiple instances of the same code that
all need to be repaired for the same “bugfix” or
enhancement

» Creates more merging & integration for something
that is fundamentally not an issue of
isolation+synchronization

85

!
DEDObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Binding-Times

Example decision binding times for a point
of functional variation (variation point):

» Source reuse time - when reusing a
configurable source artifact

> Development time

» Static code instantiation time - during
generation/assembly of code for build

» Build time - during compilation or related
processing

Source: www.softwareproductlines.com

86

43

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
More Binding-Times

» Package time - when assembling binary &
executable collections

» Customer customizations. Decisions bound
during custom coding at customer site

» Install/Upgrade time. Decisions bound during
the installation of the software product

» Startup time. Decisions bound during system
startup

» Runtime. Decisions bound when the system is
executing

Source: www.softwareproductlines.com

87

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Build/Package Options

Manage platform differences with well
known design & architecture patterns that
“bind” at build-time or package-time:

* Wrapper-Facade [POSAZ2]

* Numerous patterns from the Gang-of-Four
design patterns book (Factory, Factory
Method, Bridge, etc.)

» Combine with Make/ANT options & variables
and judicious use of conditional compilation

88

44

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Post-Release Feature Configuration

Manage variation in features/feature-sets
with selection & deselection patterns:

» Enables/disable features and services at post-
release binding-times (install/upgrade-time &
run-time)

 Component Configurator, Interceptor,
Extension Interface [POSAZ2]

» Variations of Register/Unregister and Publish-
Subscribe in a feature/service “registry”

89

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Business Rules

Differences in policy/mechanism may be
handled using a business-rules approach

» Maintains a single codebase + codeline to
deliver a single product with multiple possible
configurations of rules and rule-settings

» Strategy, Template Method, Adapter,
Decorator [“Gang of Four”]

» Adaptive Object-Model [Yoder & Johnson]
* Application “resource settings”

90

45

7
Dr‘QObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Composition, Inheritance & Aspects

« Composition & Delegation are usually best

 Inheritance may be useful in some cases

— if the type of configuration needed really does
fit a single hierarchical model of increasing
specialization

 In other cases, an aspect-oriented
approach might be better

— if the “seams” of configurability cut-across
multiple components/services

91

!
DI'.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Wrap Up

* Lean Branching
e CM Constraints
* Promotion Notions

e SCM Patterns
Book

 Managing Multiple
Variants/Products

e Other “Agile SCM”
Resources

92

46

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Principles of “Lean” Branching

Deliver as fast as possible

— Integrate fine-grained change-tasks as early as
possible

Decide as late as possible
— Branch as late as possible
Decide as low as possible

— Developers reconcile merges and commit their own
changes

Optimize across the “Whole”

— Use a Mainline to maintain a manageable branching
structure

93

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Eliminate CM Constraints

Remove Integration/Build/Test “Bottlenecks”

» One of the single biggest “drags” on development
feedback cycle-time is the “friction” that comes from
prohibitive build-times, or long testing-cycles

* These force development to either freeze or branch the
code-base for significant periods of time while waiting for
integration/build/test activities to complete

* Integration+Build tools/scripts, code structure, and
network resources must be leveraged appropriately to
minimize build times

94

47

7
Dr.DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Applicability of Promotion Mechanlsms

* Can mix & match mechanisms as appropriate

— Branch Promotion: useful when the branch is the unit of handoff
or when handoffs are infrequent on that branch

— Promotion Branching: useful for separate levels of integration (so
merging would be performed anyway) or separate
owners/policies

— Label Promotion: well suited for a promotion levels at the same
level (scope) of integration.
* Be wary of Branching/Labeling for promotion purposes if
wouldn’t otherwise make sense to branch/label or merge

* Don'’t “force-fit”! Some of these things emerge “naturally”
— Private/Task Branch = Active Line = Release Line
— Private Build = Integration Build = QA/Release Build

95

!
Dr‘DObbs DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL
Managing Product Variability

Use Late-Binding instead of Branching:

— Build/Package Options

— Feature Configuration/Selection

— Business Rules

» Think about which of the following needs to
"vary" and what needs to stay the same:
— Interface vs. Implementation vs. Integration
— Container vs. Content vs. Context

* Commonality & variability analysis helps identify
the core dimensions of variation for your project

» Use a combination of strategies based on the

different types of needed variation and the
"dimension" in which each one operates

96

48

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

!
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17-20, 2006, CHICAGO, IL

Our Book

SOFTWARE CONFIGURATION
MANAGEMENT PATTERNS

Effective Teamwork. Practical Integration

e Pub Nov 2002 By
Addison-Wesley
Professional

www.scmpatterns.com

97

wortp JULY 17-20, 2006, CHICAGO, IL
Other Agile SCM Resources

http://www.scmpatterns.com/

— SCM Patterns book has most of the codeline, workspace &
build patterns presented here; and this site has a reference
card and synopses for the patterns

http://www.cmwiki.com/AgileSCMArticles

— Numerous links to specific “Agile SCM” papers on the
subject of patterns for continuous integration, promotion,
staging, branching & merging, and more

http://blog.bradapp.net/ and http://acme.bradapp.net/

http://www.berczuk.com/

http://www.cmcrossroads.com/

98

49

7
Dr‘DObbS DESIGN, MODEL AND BUILD SOLID FRAMEWORKS

wortp JULY 17- 20 2006, CHICAGO, IL

nk You

jaraha Jgecy @
@mm, e Bl

Sal t
alama haWnkh @é/d

?I’ﬂim Arlgato
Mahalo A4
&= % Spacip,, & 2\

Gragle ffuane! T

99

50

